US team makes shortest wavelength UV-C LED using GaN

5th March 2017

Cornell researchers blaze trail to more efficient, eco-friendly deep-ultraviolet LEDs

A Cornell University research group led by Huili (Grace) Xing and Debdeep Jena, along with collaborators from the University of Notre Dame, has reported progress in creating a new, small UV-C LED. 

With wavelengths of between 200 and 280nm, UV-C light is unique because of its reputation as a killer of harmful organisms.

Using atomically controlled thin monolayers of GaN and AlN as active regions, the group has shown the ability to produce deep-UV emission with a LED between 232 and 270nm wavelengths. Their 232nm emission represents the shortest recorded wavelength using GaN as the light-emitting material. The previous record was 239nm, by a group in Japan. 

"MBE-grown 232-270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures" was published online Jan. 27 in Applied Physics Letters.

Postdoctoral researcher SM (Moudud) Islam, the lead author, said: "UV-C light is very attractive because it can destroy the DNA of species that cause infectious diseases, which cause contamination of water and air."

One of the major challenges with ultraviolet LEDs is efficiency, which is measured in three areas: injection efficiency - the proportion of electrons passing through the device that are injected into the active region; internal quantum efficiency (IQE) - the proportion of all electrons in the active region that produce photons or UV light; and light extraction efficiency - the proportion of photons generated in the active region that can be extracted from the device and are actually useful.

"If you have 50 percent efficiency in all three components ... multiply all of these and you get one-eighth," Islam said. "You're already down to 12 percent efficiency."

In the deep-UV range, all three efficiency factors suffer, but this group found that by using GaN instead of conventional AlGaN, both IQE and light extraction efficiency are enhanced.

Injection efficiency is improved through the use of a polarisation-induced doping scheme for both the negative (electron) and positive (hole) carrier regions, a technique the group explored in previous work.

Now that the group has proven its concept of enhanced deep-UV LED efficiency, its next task is packaging it in a device that could one day go on the market. Deep-UV LEDs are used in food preservation and counterfeit currency detection, among other things.

Further study will include packaging both the new technology and existing technologies in otherwise similar devices, for the purpose of comparison.

"In terms of quantifying the efficiency, we do want to package it within the next few months and test it as if it was a product, and try to benchmark it against a product with one of the available technologies," Jena said.

Other Cornell collaborators included research associate Vladimir Protasenko and electrical and computer engineering doctoral students Kevin Lee and Shyam Bharadwaj.

The work was supported by grants from the US National Science Foundation and the Air Force Office of Scientific Research.

Share this story

CS Awards winners 2016

Corporate Partners

Media Sponsors